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LE'lTER TO THE EDITOR 

Influence of long-range correlated impurities upon the phase 
transition in model superconductors 

E R Korutcheva and Y T Millev 
Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 1184-Sofia, 
Bulgaria 

Received 9 April 1984 

Abstract. The influence of long-range correlated quenched impurities of a power-law decay 
type upon the phase transition in a model system of a superconductor is investigated. 
Direct renormalisation group &-analysis yields a fixed point which is stable over a domain 
in a specific parameter connected with the long-range character of the correlations. The 
critical exponents are calculated to first order in E. The existence of a stable fixed point 
is interpreted as signalling a second-order phase transition near four dimensions of space. 

The purpose of this Letter is to extend the Halperin-Lubensky-Ma (HLM) investigation 
(Halperin ef a1 1974) by introducing long-range correlated quenched impurities of a 
special type (Weinrib and Halperin (WH) 1983) by means of a renormalisation-group 
(RG) direct perturbation &-analysis (Wilson and Kogut 1974). The features of the same 
model with short-range correlations between the impurities have already been outlined 
by Boyanovsky and Cardy (1982) for n = 2 and by Uzunov et a1 (1984) for any n (n/2 
is the number of the components of the complex-order parameter field). Taking the 
latter work as a basis, we specify the effective Hamiltonian X = ( - H / k , T )  of the 
d-dimensional model system as 

X{A, II/} = - I dx[alII/I' + rl(V -iqoA)II/12 +ibl+14 +(8~p)- ' ( ro t  A)'] (1) 

with +(x) being the (n/2)-component field, qo = 2e/hc and the vector potential A is 
Coulomb-gauged: div A(x) = 0. Now, with the intention of allowing for the influence 
of quenched impurities (or, equivalently, for local critical temperature fluctuations), 
let a = a'( T -  Tc)/ T, + cp(x). The random spatially dependent field cp(x) is defined as 
a Gaussian distribution over the impurity configurations with (cp(x)) = 0, (q(x)cp(x')) = 
g(lx - x'l). Consider g ( r ) ,  r = Ix - x'l, as a linear superposition of inverse power law 
correlations decreasing with r at different rates. Then the most (and, asymptotically 
for T -  T,+O, the only) component of g ( r )  relevant to the scaling analysis will be the 
one with the slowest decay rate at large r (WH, Kardar er a1 1983, Chang and Abrahams 
1984). So, insisting on a long-range power law, the possibility that g ( r ) -  l / r "  remains. 
As we use diagrammatic analysis in k-space, we need the Fourier transform of g ( r )  
which for small k is (WH) 
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In dealing with the influence of quenched impurities, we follow the treatment 
outlined by Lubensky (1975). In cases of exponential decay of g(r) the k-dependence 
of g ( k )  is easily ruled out of consideration on the basis of its scaling irrelevance. Now, 
with the power law correlation, we have one more qualitative possibility. The subtle 
observation of WH shows that both terms in equation (2), presumably representing two 
quite different (short- and long-range) types of correlations, can be ‘scaling reconciled’ 
by assuming that U is in the vicinity of d, in the sense that U - d = O(E) .  Here E = dU - d ; 
dU is the upper borderline dimensionality. As we persist in preserving the essential 
features of the original HLM investigation and by virtue of zero-order scaling analysis, 
we have dU = 4, i.e. E = 4 - d. Consequently, the proximity of cr and d is expressed in 
terms of a new parameter defined as 6 = 4 - U, 6 - O(E).  It embodies the long-range 
(LR) character of the quenched-impurity correlations. 

Following the above discussion, we study the critical behaviour of the model (1) 
with an account for the LR correlations to first order in E = 4 - d through analysing 
the differential RG flow equations (Wegner and Houghton 1973): 

dY/dP = -3Y - ( 3 / w ,  d p / d p  = V A p  -(n/12r)f, ( 3 4  b) 

d(qi)ldp = - T A  + E ,  (3 c> 

d a l d p  = (2- 7 ) a  + f [ K y / ( l  +a)] (n +2)/b -[K,/(l +a)(u + w )  +(3/2r)yt, ( 3 4  

db/dp = ( E  - 23)b -fK,(n +8)b2 +6K,,b(u + W) - 12t2y2, (3e) 

duldp = ( E  -277)~- K,(n + 2 ) b ~  + ~ K , , U ( U  + w ) + ~ K , ( u  + w ) ~  (3f) 

d W /  d p (6 - 2 7 )  w - K, ( n + 2) bw + 2 K, w ( U + w) .  (3g) 

and 

Here 77 and rlA are the anomalous dimensionalities of the order parameter and the 
vector potential respectively, t = pqi, K j l =  2d-1rd’2T(d/2) (T(z) is the gamma func- 
tion). We have the momentum cut-off A =  1 ;  also, we set a = O  in equations (3e,f; g )  
which is correct to O ( E )  in view of a *  - O(E).  The k-dependence of the impurity lines 
(cf (2)) does not introduce new terms proportional to k2 in the two-point order parameter 
vertex. Under the usual invariance condition on y,  we obtain r] = - 1 8 ~ / n  and qA = E 

when the fixed point (FP) value of t is t* = (12r/n)s  (the other possibility, t *  = 0, is 
trivial if we are interested in the influence of the vector potential). The values of 77 
and 3A are the same as in the pure and the short range (SR) case. 

We make the natural change of variables: r = a /  y, U = b/8r2y2,  A I  = u/2r2y2,  
A2 = w/2r2y2 and define Z = A, +A, and y = &/S. In searching for FPS of the flow 
equations we do not consider unphysical FPS (Lubensky (1975); for a detailed discussion 
on the allowed values of U, U and w and, hence, of their FP values, see WH). Also, we 
do not present the FP value of r as it is not necessary for the calculation of the critical 
exponents to first order in E.  

Our main interest lies in finding a LR FP, i.e. A f # O .  Equations (3) do have such 
a FP: 

8 UT = -( n(3 - y )  + 72y f {[n(3 - y )  + 7 2 ~ 1 ~  +432(5n +4)~’}’’~),  
n ( 5 n  + Y )  
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The immediate observation is that one more parameter (8) is involved in the FP 

values in comparison with the SR case (Boyanovsky and Cardy 1982, Uzunov ef a1 
1984). Already this brings about a complication at the level of the sign of S as we 
cannot exclude the possibility of both U T  being positive as required by stability of the 
Hamiltonian. Namely, the expression in the parentheses of equation (4a) is positive 
for the upper sign and negative for the lower sign independently of n and y, hence, 
UT > 0 for S > 0 and UT > 0 for 6 < 0. So, to make the discussion more lucid, we deal 
with the two LR possibilities separately. 

First, consider S > 0 and U*,> 0 which turns out to be the more interesting case in 
discussing the LR critical behaviour. When E > S > 0, one cannot meet the condition 
AT,+* 0 (wH). Therefore, 6 > E and 6 > 0, so lyl< 1. Rewriting the flow equations (3) 
in the new variables and linearising them around the FP (4) taken with the upper sign, 
we obtain 

U = 2/u  = f +:a + 0 ( € 2 ) .  (5) 

Contrary to the SR case (Uzunov et a1 1984), the value of U is decoupled even from 
its indirect connection with the presence of the magnetic field (through the value of 
U*,). In fact, U coincides with that of WH and as their arguments remain unaltered 
here U = 2/u  might be regarded as the exact value of U. Equation (5) provides evidence 
of the strong influence of the LR correlated impurities on the critical behaviour of the 
model described by equation (1). 

At this point we fix n = 2 to study further the particular case of a superconductor. 
To investigate the stability of the LR FP (4), we solve numerically the third-degree 
characteristic equation for the eigenvalues pi, i = 1,2,3,  connected with the irrelevant 
parameters U, A ,  and A2. The FP is stable when the real parts of all the three critical 
exponents pi are negative. In the present problem this turns out to be so in the domain 
of values for y = E / S  between y L  = -0.016 and yR = 0.054. It is worth noting that the 
domain of stability A y  = yR - y L  is smaller than the respective one in WH for n = 2 by 
an order of magnitude. For y L < y < y R  we have one real and a pair of complex 
conjugate irrelevant critical exponents. Therefore, here the LR FP (4) is of the focus 
type leading to oscillating corrections to scaling (Khmel’nitskii 1978). The qualitative 
behaviour of the exponents pi (measured in units 8) on the interval [yL,yR] is as 
follows: the real part of the conjugate pair P , , ~  decreases monotonously from zero at 
yL to (-0.770) at yR (the corresponding imaginary parts being 0.934 and 1.093); the 
real eigenvalue p3 equals (-0.633) at yL and is zero at y R  reaching its minimal value 
of (-0.751) on the interval under consideration at y = 0.007. The implications of the 
zeros for the crossover behaviour are discussed below. 

It is obvious that the flow equations (3) have a FP with A; = 0 (a short-range FP). 
The nice thing about it is that we recover the expected exchange of stability (crossover) 
of the LR and the SR FPS at the upper critical value yR = E / S  = 0.054 (n = 2). At n = 2 
the other possible FP of equations (3) corresponding to the pure (HLM) case is unstable. 

Let us go beyond the restriction n = 2 in clarifying the crossover behaviour (note 
that at an earlier stage we imposed the condition t * # O  and we are still at S > O ) .  
Below n = 366 the crossover is between LR and SR critical behaviour. In the region 
n E [2,366], the upper critical value yR increases to reach y R =  0.999 at n = 366 
whereupon y L  = -0.27 (for y R  > 1 the LR FP becomes negative, i.e. becomes unphysical). 
The exact crossover value y R  can be obtained from stability analysis of the long- and 
short-range FPS for any given value of n or, equivalently, via the extended Harris 
criterion (WH) with the help of the result for uShon(&, n )  from the paper of Uzunov et 
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a1 (1984). The same observation holds for the crossover from LR to the pure case that 
takes place for n > 366 with vpure from HLM. In this case the specific dependence of 
v(n) leads to a decrease in the upper critical value yR back from y R =  1 (for instance, 
at n = 500, yR = 0.666). Note that, not surprisingly, the marginal value of n (that is, 
the one at which the crossover ‘neighbours’ of the LR stable critical behaviour change) 
lies between 366 and 367 and, strictly speaking, is non-integer. 

Another interesting peculiarity is that for n 3 366 a subdomain of the region [yL, y R ]  
develops comprising the lower vicinity of yR in which the exponents pi are all real 
(and negative). However small this subdomain is (for instance, at n = 500 it is [0.059, 
yR = 0.666]), its existence indicates a normal and not ik focus-type stability of the FP 
(4) with UT. Besides, the size of the subdomain also increases with n. Note that the 
discussion on the stability of the LR FP (4) is independent of whether we have a 
focus-type or a normal FP; we concentrated only upon the negative signs of the real 
parts of the exponents. 

Crossing the lower critical value y ,  of the domain of stability, the LR FP remains 
positive, but loses stability because the real part of the conjugate pair of irrelevant 
exponents goes positive inducing a spiral runaway behaviour. The instability sets in 
at y, through a subcritical Hopf bifurcation as has been checked explicitly for the case 
n =2.  

Now let us consider briefly the case 6 < O  and uT>O (equations (4)) which is the 
second possibility for a LR FP. Here 6 < E cannot meet the requirement A?,- > 0. So 
0 > 6 > E and y > 1. With the due restrictions A:,- > 0 and Z I  > 0 (WH) the numerical 
analysis yields a physical LR FP in the region of the (n, y)-plane specified by n 2 193 
( n  integer) and y Z y , ;  y ,  is 21295 at n = 193 and decreases to approach 2 with the 
increase of n. However, it is unstable towards perturbations in all the irrelevant 
parameters as the irrelevant exponents have positive real parts throughout the indicated 
region. 

With all that information in mind we may try to draw a consistent conclusion as 
to the order of the phase transition signalled by the existence of the stable LR FP. In 
the spirit of the RG interpretation of critical behaviour we have to conclude that the 
system exhibits a second-order phase transition in the domain of stability of the FP 

indicated explicitly for the case n = 2. However, we cannot extend this conclusion to 
d =3. A simple scaling consistency condition (non-negativity of the set of relevant 
scaling exponents) imposes once again (cf Uzunov et a1 1984) the restriction / E I  < 0.2 
at n = 2, that is, we do not have even the virtual possibility of speculating of E = 1 and, 
consequently, of d = 3. So, at d = 3, one must rely on the original argument of HLM 
for a fluctuation-induced first-order phase transition that can be extended to the 
quenched impurity case without alterations. The recent considerable development 
towards accounting for the fluctuations in the order parameter in reasoning the order 
and the ‘size’ of the transition proved that this is not straightforward even in the pure 
case (Lawrie 1983). There is little hope that the introduction of LR correlated impurities 
of the type discussed here would lift the ambiguity of the persistence of an arbitrary 
magnetic field (Lawrie 1983), because the power law correlation has no characteristic 
scale and, besides, the choice of the decay rate is strongly bound by the 6 = O ( E )  ansatz. 

We acknowledge with thanks the critical and stimulating discussions with Dr D I 
Uzunov at all stages of the investigation. We also thank K Korutchev for helpful 
instructions on the numerical analysis. 
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